Skip to content
  • About the blog
  • Blog Feed

NST First Year Maths

Some unofficial solutions to Cambridge NST IA maths papers

vectors

2008 Paper 2 Question 10

1st Sep 20201st Nov 2020nstmathsupervisorLeave a comment

\displaystyle \begin{aligned} L_1: \vec{x}(\lambda) &= \lambda \vec{a} + \vec{b} \\ L_2: \vec{x}(\mu) &= \mu \vec{c} + \vec{d}  \end{aligned}

The minimum distance between 2 lines is 

d = | (\vec{p_1} -\vec{p_2}) \cdot \hat{n} | \quad(1)

where \vec{p_i} are position vectors of points on the respective lines, and \hat{n} is normal to both lines.

If L_1 and L_2 intersect, d=0. Using (1) and L_1 and L_2,

d = | (\vec{b} -\vec{d}) \cdot \hat{n} | and \hat{n} = \frac{\vec{a} \times \vec{c}}{|\vec{a} \times \vec{c}|}

\therefore d = | (\vec{b} -\vec{d}) \cdot \frac{\vec{a} \times \vec{c}}{|\vec{a} \times \vec{c}|} | = 0

\begin{aligned} \Rightarrow (\vec{b} -\vec{d}) \cdot {\vec{a} \times \vec{c}} &= 0 \\ \Rightarrow \vec{b} \cdot \vec{a} \times \vec{c} - \vec{d} \cdot \vec{a} \times \vec{c} &= 0 \\ \Rightarrow \vec{c} \cdot \vec{b} \times \vec{a} - \vec{a} \cdot \vec{c} \times \vec{d} &= 0 \quad(2)\\ \Rightarrow -\vec{c} \cdot \vec{a} \times \vec{b} - \vec{a} \cdot \vec{c} \times \vec{d} &= 0 \quad(3)\\ \Rightarrow \vec{a} \cdot \vec{c} \times \vec{d} + \vec{c} \cdot \vec{a} \times \vec{b} &= 0 \quad \text{QED} \end{aligned}

Notes:
  • To obtain (2) the cyclic symmetry of the triple scalar product has been used.
  • To obtain (3) the anti-symmetry of the vector product has been used.
2008, Paper 2vectors

Search

Pages

  • About the blog
  • Natural Science Tripos First Year Maths
  • Blog Feed

Categories

  • 2008 (2)
  • 2011 (3)
  • 2013 (3)
  • 2014 (3)
  • 2016 (5)
  • 2019 (5)
  • 2020 (1)
  • Paper 1 (11)
  • Paper 2 (11)

Tags

complex numbers Cramer's rule cylindrical polar coordinates differentiation eigenvalues Fourier series gaussian elimination integration Lagrange multipliers linear algebra matrices matrix inverse multiple integrals ordinary differential equations partial differential equations probability reduction formulae Taylor series vector calculus vectors
Follow NST First Year Maths on WordPress.com
Blog at WordPress.com.
  • Subscribe Subscribed
    • NST First Year Maths
    • Already have a WordPress.com account? Log in now.
    • NST First Year Maths
    • Subscribe Subscribed
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar