Natural Science Tripos First Year Maths

2020 Paper 1 Question 6

I = \int x \sqrt{3-2\,x}\, dx You can do this by substitution. Let u = 3 -2x \Rightarrow dx = -\frac{1}{2} du and x = \frac{1}{2} \left( 3-u \right ) $latex \begin{aligned} \therefore I &= \int \frac{(3-u)}{2} \, u^{1/2} \, \left(-\frac{1}{2} \right) \,du \\ &= -\frac{1}{4} \int \left( 3u^{1/2}…

2019 Paper 2 Question 16

(a) I = \int\int_S (z+y^3) dS = I_1 + I_2 + I_3 where I_1 is the integral over the upper circular surface, S_1, at z=b, I_2 is the integral over the cylindrical surface, S_2, and I_3 is the integral over the lower hemi-spherical surface, S_3. Each integral…