Skip to content
  • About the blog
  • Blog Feed

NST First Year Maths

Some unofficial solutions to Cambridge NST IA maths papers

reduction formulae

2013 Paper 2 Question 13

3rd Oct 20201st Nov 2020nstmathsupervisorLeave a comment

(a)

Let y = x/2

dy = dx/2

Therefore,

I = 2\,\int_0^{\infty} e^{-y^2}\,dy

Now, given

\int_{-\infty}^{\infty}e^{-x^2}dx = \sqrt \pi

we have, due to the even integrand

\int_{0}^{\infty}e^{-x^2}dx = \frac{1}{2}\sqrt \pi

Thus,

I = 2 \left( \frac{1}{2} \sqrt \pi \right) = \sqrt \pi

(b)

(i)

The key is to rewrite the integrand and use integration by parts,

I_n = \int_{-\infty}^{\infty} x^{n-1}\,x\,e^{-x^2}dx

Now let u =x^{n-1} and dv/dx=x\,e^{-x^2}

du = (n-1)x^{n-2}\,dx

and

v = -\frac{1}{2}e^{-x^2}

So

I_n = \left[ -\frac{1}{2}x^{n-1}e^{-x^2} \right]_{-\infty}^{\infty} + \frac{1}{2} \int_{-\infty}^{\infty}(n-1) x^{n-2}e^{-x^2}\,dx

The exponential dominates the polynomial, so the first term is zero, and the final integral belongs to the family of given integrals, so

I_n = \frac{n-1}{2} \, I_{n-2}

2013, Paper 2integration, reduction formulae

Search

Pages

  • About the blog
  • Natural Science Tripos First Year Maths
  • Blog Feed

Categories

  • 2008 (2)
  • 2011 (3)
  • 2013 (3)
  • 2014 (3)
  • 2016 (5)
  • 2019 (5)
  • 2020 (1)
  • Paper 1 (11)
  • Paper 2 (11)

Tags

complex numbers Cramer's rule cylindrical polar coordinates differentiation eigenvalues Fourier series gaussian elimination integration Lagrange multipliers linear algebra matrices matrix inverse multiple integrals ordinary differential equations partial differential equations probability reduction formulae Taylor series vector calculus vectors
Follow NST First Year Maths on WordPress.com
Blog at WordPress.com.
  • Subscribe Subscribed
    • NST First Year Maths
    • Already have a WordPress.com account? Log in now.
    • NST First Year Maths
    • Subscribe Subscribed
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar