Skip to content
  • About the blog
  • Blog Feed

NST First Year Maths

Some unofficial solutions to Cambridge NST IA maths papers

matrices

2008 Paper 2 Question 16

14th Oct 20201st Nov 2020nstmathsupervisorLeave a comment

(a)

(i)

As an intermediate result

A^2 = \left( \begin{matrix}0 & 0 & 1\\ 1& 0 &0\\ 0& 1& 0\end{matrix} \right)

(ii)

A^{3n+2} = (A^3)^n A^2 = (I)^n A^2 = A^2

and A^2 is given explicitly in (i).

(iii)

Use

M^{-1} = \frac{1}{\text{det}M }\left[ \text{cof }M \right]^T

Now

\text{det}A^2 = 1

and the cofactor matrix is

\text{cof }A^2 = \left( \begin{matrix}0 & 0 & 1\\ 1& 0 &0\\ 0& 1& 0\end{matrix} \right)

Thus

(A^2)^{-1}=\left( \begin{matrix}0 & 1 & 0\\ 0& 0 &1\\ 1& 0& 0\end{matrix} \right)

This can easily be verified by multiplying by A^2.

(iv)

\begin{aligned} A^{3n+1} &= (A^3)^n A = (I)^n A = A \\ \therefore (A^{3n+1})^{-1} &= A^{-1}\end{aligned}

We know A^3=I, so

\begin{aligned} A^2A &= I\\ A^2 = A^{-1} \end{aligned}

so finally

(A^{3n+1} )^{-1} = A^2

2008, Paper 2matrices, matrix inverse

2016 Paper 2 Question 5

11th Oct 20201st Nov 2020nstmathsupervisorLeave a comment

(a)

Yes. A real symmetric matrix can be (orthogonally diagonalised).

(b)

No. This is a rotation matrix. The eigenvalues are non-real except for special values of \theta.

2016, Paper 2eigenvalues, matrices

2014 Paper 1 Question 11

5th Oct 20201st Nov 2020nstmathsupervisorLeave a comment

(a)

|A| = \left| \begin{matrix} 1 & -4 & 7 \\ -4 & 4 & -4 \\ 7 & -4 & 1 \end{matrix} \right|

Clearly, you can just expand this as is, but it can be worth simplifying with some elementary row/column operations.

R_2 \to R_2 + R_3

|A| = \left| \begin{matrix} 1 & -4 & 7 \\ 3 & 0 & -3 \\ 7 & -4 & 1 \end{matrix} \right|

C_3 \to C_3 + C_1

|A| = \left| \begin{matrix} 1 & -4 & 8 \\ 3 & 0 & 0 \\ 7 & -4 & 8 \end{matrix} \right|

C_3 \to C_3 + 2C_2

|A| = \left| \begin{matrix} 1 & -4 & 0 \\ 3 & 0 & 0 \\ 7 & -4 & 0 \end{matrix} \right|

With a column of zeros in the determinant

|A| = 0.

For the trace

\text{Tr}(A) = 1 + 4 + 1 = 6

The determinant is equal to the product of the eigenvalues, so (at least) one of the eigenvalues equals zero.

2014, Paper 1matrices

Search

Pages

  • About the blog
  • Natural Science Tripos First Year Maths
  • Blog Feed

Categories

  • 2008 (2)
  • 2011 (3)
  • 2013 (3)
  • 2014 (3)
  • 2016 (5)
  • 2019 (5)
  • 2020 (1)
  • Paper 1 (11)
  • Paper 2 (11)

Tags

complex numbers Cramer's rule cylindrical polar coordinates differentiation eigenvalues Fourier series gaussian elimination integration Lagrange multipliers linear algebra matrices matrix inverse multiple integrals ordinary differential equations partial differential equations probability reduction formulae Taylor series vector calculus vectors
Follow NST First Year Maths on WordPress.com
Blog at WordPress.com.
  • Subscribe Subscribed
    • NST First Year Maths
    • Already have a WordPress.com account? Log in now.
    • NST First Year Maths
    • Subscribe Subscribed
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar