Skip to content
  • About the blog
  • Blog Feed

NST First Year Maths

Some unofficial solutions to Cambridge NST IA maths papers

complex numbers

2016 Paper 1 Question 11

8th Oct 20201st Nov 2020nstmathsupervisorLeave a comment

(a)

When \lambda = 1

|z-i| = |z^*-i|

Geometrically this means z is as far from i as z^*.

Let z = x +i\,y

\begin{aligned} |x+iy-i| &= |x-iy-i| \\ \Rightarrow x^2 + (y-1)^2 &= x^2 + (y+1)^2 \\ \Rightarrow y^2-2y+1 &= y^2 +2y +1 \\ \Rightarrow y &= 0 \end{aligned}

y=0 is the equation of the straight line in the complex plane. This is consistent with the geometric interpretation.

(b)

When \lambda = 0 it must be that z=i. This is another straight, horizontal, line.

2016, Paper 1complex numbers

2014 Paper 1 Question 12

6th Oct 20201st Nov 2020nstmathsupervisorLeave a comment

(b)

\tanh z = -i

So

\begin{aligned} \Rightarrow \frac{\sinh z}{\cosh z} &= -i \\ \Rightarrow \frac{e^z-e^{-z}}{e^z+e^{-z}} &= -i \\ \Rightarrow e^{2z}-1 &= -i \, ( e^{2z}+1 ) \\ \Rightarrow (1+i)e^{2z} &= 1 - i \\ \Rightarrow e^{2z} &= \frac{1-i}{1+i} \\ \Rightarrow e^{2z} &= \frac{1}{2}(1-2i-1) \\ \Rightarrow e^{2z} &= -i \\ \Rightarrow e^{2z} &= e^{-i\left( \frac{\pi}{2} +2k\pi \right) }, \quad k \in \mathbb{Z} \\ \Rightarrow 2z &= -i\left( \frac{\pi}{2} +2k\pi \right) \\ \Rightarrow z &= -i\left( \frac{\pi}{4} +k\pi \right), \quad k \in \mathbb{Z} \\ \end{aligned}

2014, Paper 1complex numbers

2011 Paper 1 Question 17

15th Sep 20201st Nov 2020nstmathsupervisorLeave a comment

(b)

z^6+z^3+1=0 \quad (1)

Let z^3=w

\therefore \; w^2+w+1=0

This is a quadratic equation

\Rightarrow w = \frac{-1 \pm \sqrt{-3}}{2} = -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}

Recognise 1/2 and \sqrt3/2 as standard trigonometric ratios. Consider the + root

w_+ = e^{i 2\pi/3} = z^3

Compute the cube roots

z=\exp{\left[ i \left( \frac{2}{9}\pi+\frac{2k}{3}\pi \right) \right] }, \quad k = 0,1,2

Or in full, placing angles in the range (-\pi,\pi]

z=\exp{ (i \theta)}, \quad \theta \in {\frac{2}{9}\pi, \frac{8}{9}\pi, -\frac{4}{9}\pi}

As equation (1) has real coefficients, the roots occur in complex-conjugate pairs. The full solution set is therefore

z=\exp{ (i \theta)}, \quad \theta \in {\pm \frac{2}{9}\pi, \pm \frac{8}{9}\pi, \pm \frac{4}{9}\pi}

2011, Paper 1complex numbers

Search

Pages

  • About the blog
  • Natural Science Tripos First Year Maths
  • Blog Feed

Categories

  • 2008 (2)
  • 2011 (3)
  • 2013 (3)
  • 2014 (3)
  • 2016 (5)
  • 2019 (5)
  • 2020 (1)
  • Paper 1 (11)
  • Paper 2 (11)

Tags

complex numbers Cramer's rule cylindrical polar coordinates differentiation eigenvalues Fourier series gaussian elimination integration Lagrange multipliers linear algebra matrices matrix inverse multiple integrals ordinary differential equations partial differential equations probability reduction formulae Taylor series vector calculus vectors
Follow NST First Year Maths on WordPress.com
Blog at WordPress.com.
  • Subscribe Subscribed
    • NST First Year Maths
    • Already have a WordPress.com account? Log in now.
    • NST First Year Maths
    • Subscribe Subscribed
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar