2011 Paper 1 Question 11

(a)

Given it is for 4 marks, I suspect they desire the remainder term including.

f(x) = f(a) + f^{(1)}(a)(x-a)  + f^{(2)}(a)\frac{(x-a)^2}{2!}+f^{(3)}(\xi)\frac{(x-a)^3}{3!}

where a < \xi < x.

(b)

For x=0, the Taylor series becomes

f(x) = f(0) + f^{(1)}(0)x  + f^{(2)}(0)\frac{x^2}{2!}+f^{(3)}(0)\frac{x^3}{3!}+\cdots

(i)

f(x) = \frac{1}{(x^2+9)^{1/2}}

f(0) = 1/3

Note f(x) is an even function so we expect f^{(1)}(0) =f^{(3)}(0) =0 but we still need to differentiate to work out f^{(2)}(0).

\begin{aligned}f^{(1)}(x) &= (-1/2)(x^2+9)^{-3/2}\,2x \\  &= -\frac{x}{(x^2+9)^{3/2}} \\ &= -x\,f^3 \end{aligned}

As expected f^{(1)}(0)=0

Notice also the very useful device here of expressing the derivative in terms of the original function. It can save a lot of effort sometimes.

\begin{aligned}  -f^{(2)}(x) &= x (3)f^2 \, f^{(1)}(x) + f^3  \\ \Rightarrow -f^{(2)}(0) &=\left( f(0) \right)^3 \\ &= 1/27 \end{aligned}

Putting it all together we obtain

{f(x) = 1/3 - 1/54 \, x^2 }

2013 Paper 1 Question 20

(a)

Centre the cuboid, with volume V, with the lower face on the xy plane. Let the coordinates of the vertex in x\ge0,y\ge0,z\ge 0 where the cuboid intersects the hemisphere be x, y, z.

V=2x\,2y\,z

The upper vertices are on the surface of the hemishpere so we get the constraint

x^2+y^2+z^2=a^2 \quad(1)

Form the objective function

f=4xyz-\lambda \left(x^2+y^2+z^2-a^2 \right)

Take partial derivates

\begin{aligned} f_x &= 4yz - 2 \lambda x &= 0 \\  f_y &= 4xz - 2 \lambda y &= 0 \\ f_z &= 4xy - 2 \lambda z &= 0\\ f_{\lambda} &= -\left(x^2+y^2+z^2-a^2 \right) &= 0 \end{aligned}

From f_x

\lambda = \frac{2yz}{x}

Substitute in f_y, recall x\ge0,y\ge0

f_y = 2xz -\frac{2yz}{x} y = 0 \Rightarrow x^2=y^2 \Rightarrow x=y

Similarly from f_z we get x=z. Thus

x=y=z .

Using the constraint (1),

x = \frac{a}{\sqrt3} .

Finally, again using x=y=z, the required volume is

V=\frac{4}{3\sqrt3}a^3