2013 Paper 1 Question 20

(a)

Centre the cuboid, with volume V, with the lower face on the xy plane. Let the coordinates of the vertex in x\ge0,y\ge0,z\ge 0 where the cuboid intersects the hemisphere be x, y, z.

V=2x\,2y\,z

The upper vertices are on the surface of the hemishpere so we get the constraint

x^2+y^2+z^2=a^2 \quad(1)

Form the objective function

f=4xyz-\lambda \left(x^2+y^2+z^2-a^2 \right)

Take partial derivates

\begin{aligned} f_x &= 4yz - 2 \lambda x &= 0 \\  f_y &= 4xz - 2 \lambda y &= 0 \\ f_z &= 4xy - 2 \lambda z &= 0\\ f_{\lambda} &= -\left(x^2+y^2+z^2-a^2 \right) &= 0 \end{aligned}

From f_x

\lambda = \frac{2yz}{x}

Substitute in f_y, recall x\ge0,y\ge0

f_y = 2xz -\frac{2yz}{x} y = 0 \Rightarrow x^2=y^2 \Rightarrow x=y

Similarly from f_z we get x=z. Thus

x=y=z .

Using the constraint (1),

x = \frac{a}{\sqrt3} .

Finally, again using x=y=z, the required volume is

V=\frac{4}{3\sqrt3}a^3

Leave a comment